Islet expression of M3 uncovers a key role for chemokines in the development and recruitment of diabetogenic cells in NOD mice.

نویسندگان

  • Andrea P Martin
  • Marcos G Grisotto
  • Claudia Canasto-Chibuque
  • Steven L Kunkel
  • Jonathan S Bromberg
  • Glaucia C Furtado
  • Sergio A Lira
چکیده

OBJECTIVE Type 1 diabetes is an autoimmune disease characterized by a local inflammatory reaction in and around islets followed by selective destruction of insulin-secreting beta-cells. We tested the hypothesis that chemokines affect different mechanisms responsible for the development of diabetes in NOD mice. RESEARCH DESIGN AND METHODS We examined chemokine expression in islets of NOD mice and tested their functional relevance to development of diabetes using transgenic mice expressing the mouse herpesvirus 68-encoded chemokine decoy receptor M3 (NOD-M3 mice) in insulin-secreting beta-cells. RESULTS Multiple chemokines were expressed in pancreatic islets of NOD mice before development of diabetes. Islet-specific expression of the pan-chemokine inhibitor M3 dramatically reduced leukocyte infiltration and islet destruction and completely blocked development of diabetes in NOD-M3 mice. M3 blocked diabetes by inhibiting the priming of diabetogenic cells in the pancreatic lymph nodes and their recruitment into the islets. This effect was specific to the pancreatic islets because M3 expression did not affect other ongoing autoimmune processes. CONCLUSIONS These results demonstrate that chemokines mediate afferent and efferent immunity in type 1 diabetes and suggest that broad chemokine blockade may represent a viable strategy to prevent insulitis and islet destruction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Diabetogenic Mechanism of High Fat Diet in Combination with Arsenic Exposure in Male Mice

Obesity is a main reason of type 2 diabetes and also chronic exposure to arsenic (As)can produce diabetic symptoms. In previous studies, the association between high-fat dietand arsenic in the incidence of diabetes was found, but the role of beta cells activity, livermitochondrial oxidative stress, and hepatic enzymes (leptin, adiponectin and beta amylase)was unclear. Thus, present study was co...

متن کامل

Evaluation of Diabetogenic Mechanism of High Fat Diet in Combination with Arsenic Exposure in Male Mice

Obesity is a main reason of type 2 diabetes and also chronic exposure to arsenic (As)can produce diabetic symptoms. In previous studies, the association between high-fat dietand arsenic in the incidence of diabetes was found, but the role of beta cells activity, livermitochondrial oxidative stress, and hepatic enzymes (leptin, adiponectin and beta amylase)was unclear. Thus, present study was co...

متن کامل

Thymic and postthymic regulation of diabetogenic CD8 T cell development in TCR transgenic nonobese diabetic (NOD) mice.

Natural development of diabetes in nonobese diabetic (NOD) mice requires both CD4 and CD8 T cells. Transgenic NOD mice carrying alphabeta TCR genes from a class I MHC (Kd)-restricted, pancreatic beta cell Ag-specific T cell clone develop diabetes significantly faster than nontransgenic NOD mice. In these TCR transgenic mice, a large fraction of T cells express both transgene derived and endogen...

متن کامل

Co-Transplantation of VEGF-Expressing Human Embryonic Stem Cell Derived Mesenchymal Stem Cells to Enhance Islet Revascularization in Diabetic Nude Mice

Background: Pancreatic islet transplantation has emerged as a promising treatment for type I diabetes. However, its efficacy is severely hampered due to poor islet engraftment and revascularization, which have been resulted to partially loss of transplanted islets. It has been shown that local delivery of vascular endothelial growth factor (VEGF) could accelerate transplanted islet revasculari...

متن کامل

Development and function of diabetogenic T-cells in B-cell-deficient nonobese diabetic mice.

Insulin-dependent diabetes (type 1 diabetes) in the NOD mouse is a T-cell-mediated autoimmune disease. However, B-cells may also play a critical role in disease pathogenesis, as genetically B-cell-deficient NOD mice (NOD.microMT) have been shown to be protected from type 1 diabetes and to display reduced responses to certain islet autoantigens. To examine the requirements for B-cells in the dev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 57 2  شماره 

صفحات  -

تاریخ انتشار 2008